
1

A CRITICAL ANALYSIS OF SYNTHESIZER USER INTERFACES FOR
TIMBRE

Allan Seago
London Metropolitan University

Commercial Road
London E1 1LA

a.seago@londonmet.ac.uk

 Simon Holland
Dept of Computing

The Open University
Milton Keynes MK7 6AA

s.holland@open.ac.uk

 Paul Mulholland
KMI

The Open University
Milton Keynes MK7 6AA
 p.mulholland@open.ac.uk

ABSTRACT
In this paper, we review and analyse some categories of
user interface for hardware and software electronic music
synthesizers. Problems with the user specification and
modification of timbre are discussed. Three principal types
of user interface for controlling timbre are distinguished. A
problem common to all three categories is identified: that
the core language of each category has no well-defined
mapping onto the task languages of subjective timbre
categories used by musicians.

Keywords
Music, Synthesis, Synthesizers, Timbre, Semantic
Directness, Usability.

1. INTRODUCTION
This paper analyses representative user interfaces for
specifying and controlling timbre in electronic music
synthesizers. Relevant taxonomies, design issues and
problems for interface design in this domain are identified.
We characterise an underlying problem for all categories of
interface analysed. Some possible future directions for
addressing the problems are proposed.
The user interfaces of audio hardware and software
generally, and of music synthesizers in particular, have
received relatively little study within HCI. An analysis
conducted on the working methods of composers working
with Computer Music Systems (CMS) [7] identified
various typical tasks, and concluded that CMS designers
must allow for wide variations in composers’ knowledge
and skill and wide individual variation in the types of
composer they are designing for. Recommendations
included: providing more than one level of interaction;
hiding unwanted levels of complexity; and employing
knowledge based systems (KBS) to manage details that a
user does not wish to specify directly. A previous critique
of synthesizer user interface design [10] focused on the

This paper appeared as: Seago, Allan; Holland, Simon and
Mulholland, Paul (2004). A Critical Analysis of Synthesizer
User Interfaces for Timbre. In: Dearden, Andy and Watt,
Leon Eds. Proceedings of the XVIII British HCI Group
Annual Conference HCI 2004. Bristol, UK: Research Press
International, pp. 105–108.

.control surfaces of four contemporary instruments, and
commented on the degree to which they conformed to
design principles identified by Williges et al [15]. It was
concluded that the demands placed on the user by the
interfaces meant that they were far from ideal for the
purpose: noting that, in general, ‘user interface principles
have been, at best haphazardly applied’. The authors also
suggested issues that should drive future research in this
area. Another more recent related study [4] has applied a
heuristic evaluation to an electric guitar pre-amplifier
interface. The present paper examines a number of
categories of user interface for controlling timbre, taking
commercial software and hardware synthesizers as
examples.

2. BACKGROUND
While the range of tools and techniques available to the
musician for the design and editing of sound is very large,
usability in modern synthesizers is generally poor [5,8,3].
Thimbleby’s example of the design of electronic
calculators [14] is of relevance here. He notes that the hand
held calculator is a ‘mature technology’, with well defined
requirements, but goes on to describe two models of
calculator which look superficially very similar, but whose
controls often do different things. Similarly, over the past
fifteen years, control surface designs of commercially
available synthesizers have to some degree converged, to
the extent that we can consider the instrument to have
acquired a generic interface [8]. However, one cannot
assume that similar looking buttons will perform the same
function. Conversely, a given function could be performed
by diverse different controls.
The range of tasks that must be performed by a synthesizer
is both broader and less easily defined than the range
performed by a calculator. Poor usability has led to a
situation where most users seem to have limited their
choices of timbre to selections from a bank of preset
timbres - evidence for this is largely anecdotal, but
“allegedly, nine out of ten DX7s coming into workshops
for servicing still had their factory presets intact” [1].
Over the last few years, hardware synthesizer functionality
has increasingly been migrating into software (Reaktor,
Reason etc). This development has potentially freed
designers from the constraints imposed by hardware

2

limitations: particularly from the limited space available for
controllers and displays, but also from cost constraints of
hardware controls. Yet, software designers have sought to
emulate hardware synthesizers not only in models of
synthesis – how the sounds are generated - but also in the
user interface. Thus, the user is presented on screen with a
simulation of a synthesizer hardware control surface, and
must control it via virtual buttons, faders and rotary dials
that mimic the hardware they have replaced. For many
users, this has the virtue of familiarity; but it tends to
impose unnecessary usability problems.
Pressing [8] describes the controls of the synthesizer user
interface as falling into two broad categories: those which
govern ‘real time’ synthesis, and those which provide
access to the parameters governing ‘fixed’ synthesis. Real
time synthesis controllers, such as pitch wheels, foot pedals
and the keyboard, allow instant and dynamic modification
of single scalar aspects of existing sounds: pitch, filter
frequency, volume etc. These controllers are designed and
positioned on the control surface to meet the requirements
of real-time performance, and it is relatively easy for users
to understand their use: the effect that a controller has on
the sound is instantly audible. Real time controls will not
be considered further here.
The part of the interface devoted to ‘fixed synthesis is the
focus of the current study. In fact, as we will see in the
next section, the term 'fixed' is something of a misnomer,
since in many cases, the control of timbre is achieved by
wide-ranging modifications of this element. A more
suitable term might be 'relatively fixed'; however we will
retain Pressing's terminology, while noting any resulting
ambiguities.
The 'fixed synthesis' component of the interface allows the
design and programming of sound objects. Its informed
use typically requires an in-depth understanding of the
internal architecture of the instrument, and the methods
used to represent and to generate sound. Thus, under most
current systems, the user is obliged to express directives
for sound specification in system terminology, rather than
in language derived from the user domain.

3. TASK AND CORE LANGUAGES
There is a considerable gulf between the task languages
and the core languages [2] in synthesizer interfaces. Task
language terms like shrill, spacious, dark, grainy etc are
among those typically used by musicians to describe those
attributes of sound - timbre, texture and articulation - which
cannot be captured well by conventional musical notation.
These terms are often chosen for their perceived analogies
with other domains: colour and texture, for example, or for
emotional associations. The vocabulary of the core
languages, by contrast, refers to objective and measurable
quantities associated with sound, such as spectral
distribution and density, and their evolution over time. The
problem is to map one set of descriptors onto the other. The
bridging of the gulf between task and core language in
sound synthesis user interfaces has been approached in

diverse ways: using techniques from artificial intelligence
[5], knowledge based systems [3,9] and by the embodiment
of metaphors derived from acoustical mechanisms [13].

4. USER INTERFACE ARCHITECTURES
In this section, we will describe the three most common
core languages used in controlling timbre in synthesizers.
In approximate order of the complexity of associated user
interface issues, (though not necessarily their complexity
from other perspectives) they are as follows.
• Parameter selection in a fixed architecture,
• Architecture specification and configuration,
• Direct specification of physical characteristics of

sound
For purposes of exposition, and reflecting historical trends,
it is useful to begin with the second of these approaches
first: Architecture Specification and Configuration, also
known as User Specified Architecture. This approach to
specifying timbre has its origin in the interfaces of early
synthesizers, such as the Arp, Moog and EMS. In such
early synthesizers, a given sound was defined in terms of
the configuration of electronic modules required to
generate it. The hardware interface offered total control
over the choice, interconnection, and settings of these
modules via physical plugboards. Modern versions of this
idea use GUI based interfaces to accomplish similar ends.
The approach appearing first in the list above (Parameter
Selection, also known as 'Fixed Architecture’) came next
historically. This approach effectively froze selected
configurations of modules and simply allowed the user to
vary the values of parameters controlling these modules.
Different synthesizers may use quite different sound
synthesis modules from each other, but the principle
remains the same. Thus, fixed architectures present to the
user an internal model of sound which is essentially a tree
or graph structured assemblage of parameters. For the user,
the task of defining a sound is one of traversing this
structure, specifying parameters e.g. by a ‘form filling’
process. The earlier mentioned user specified
architectures, by contrast, are essentially fluid and non-
hierarchical. We will revisit both types below.
Finally, the third category of user interface for timbre
control in synthesizers is Direct Specification. This was
first widely introduced commercially in early Fairlight
synthesizers. This category allows the user, in principle, to
specify sound directly by, for example, drawing or
modifying a waveform on the screen. This category will be
described in much greater detail below.
In the next three subsections, will consider each of the
three categories in more detail, describing modern
interfaces from each category. We will draw on a series of
user tests comparing the categories [11].

3

4.1 Fixed Architecture
As noted above, the ‘fixed synthesis’ control surfaces of
more recent hardware-based synthesizers (recall that 'fixed
synthesis' does not mean 'fixed architecture') have
standardised in recent years. Typically, there are selection
controls for preformatted sounds (known as 'programs' or
'patches'), programming controls (to change program
parameters) and mode selection controls (play, edit, etc).
Limitations on control surface space mean that controls
may be multi-functional: their usage at any given time will
be determined by the mode currently selected.
The model of sound generation used in interfaces of this
category has a static and hierarchical structure, whose
constituent parts are parameter settings defining
waveforms, envelopes, filter cut-off frequencies, etc. The
task of defining or editing a sound involves the traversal of
this structure, incrementally modifying the sound by
selecting and changing individual parameters. An example
of such an interface is that of the Yamaha SY35. The LCD
indicates no more than one parameter at a time, providing
no overall visibility of the system state. However, since all
parameters have default values, instant feedback is
available simply by listening to the current sound; the user
is able to assess the effect of the changes made; actions are
at all times reversible, and errors or ‘illegal actions’ are
impossible. Parameters are selected, and modifications
effected, in the same way throughout the structure.

4.2 User Specified Architecture
In this architecture, sound is viewed as the output of a
network of functional components - oscillators, filters, and
amplifiers. The structure of this network is fluid, and can
become quite complex. The output of any element may be
processed by one or more other elements. However, even
greater fluidity comes from the fact that the parameters of
each element, frequency, envelope and cut-off frequency,
etc, can be dynamically controlled by the output of any
other element. As already noted, early subtractive
synthesizers were in this category; the basic components
were linked by physical patch cords, and the signal path
was visible and immediately modifiable.
In hardware synthesizers, the range of sound that can be
produced is limited by the number of hardware modules
available. Software versions, however, in important
respects, have no such restrictions. One striking aspect of
the oscillator/filter/amplifier synthesis model associated
with subtractive synthesis is the fact that it has survived the
arrival of many other synthesis methods, and that its
associated vocabulary has been appropriated and applied in
software; it has in many respects become a lingua franca
for audio synthesis. (In the user study reported in [11], a
number of users were clearly confused by the apparent
absence of these modules in an interface which simply
named them differently).
Reaktor [6] is a good example of a synthesizer that
emulates and mimics in software a modular subtractive
synthesizer. Each instrument is made up of a number of

modules drawn from the subtractive/FM synthesis domain
(envelope generators, oscillators, etc). Connections
between components are made by mouse dragging. In this
way, a complex and fluid structure may be generated
recursively, in the sense that instruments may be defined as
assemblages of other instruments. The interaction style
used to build an instrument is direct manipulation. It is
important to emphasise however, that the ‘objects of
interest’ with which the user engages are not
representations of the sound itself, but of the functional
components required to create it. As in the hardware
equivalents, there is clear visibility of the system state at all
times, and actions are reversible. The interaction is
consistent throughout, (a given action will produce the
same result in different contexts), and the DM style makes
‘illegal’ actions impossible. However, as with the
hardware equivalents, the user is inherently unable to
aurally evaluate the success of his/her actions until a
minimum number of connections have been made; up until
this point, there will be no sound at all.

4.3 Direct Specification
All the user interfaces examined in the previous two
sections are predicated on a model of sound as an
assemblage of components which generate or modify
sound. This assemblage, having been designed, is the
engine which generates the required sound. The following
section deals with interfaces that allow the desired sound to
be specified more directly.
Visual representation of sonic information is usually in
either the time domain (essentially a plot of the
waveform), or the frequency domain (a plot of the relative
amplitudes of the frequency components of a waveform).
The interpretation of time domain plots is, to some extent,
intuitively clear. In principle, this output expression of the
system is capable of being used to formulate an input
expression in a manner characteristic of direct
manipulation systems [2] - in this case, by the provision of
tools to ‘draw’ and ‘edit’ the desired waveform. However,
a user interface for ‘designing’ sounds in any detail in this
way is hampered by the lack of any human understandable
mapping between the subjective and perceptual
characteristics of the sound in any detail and its visual
representation on screen. In practice, no user is able to
specify finely the waveform of imagined sounds in general.
In other words, there is no semantic directness for the
purpose of specifying any but the most crudely
characterized sounds. The gap between core language and
task language is just as wide as in the first two categories.
To make the discussion more concrete, we will consider a
system of this category as studied in [11].
Sound Sampler is a package by Alan Glenns, designed for
the editing of short audio samples, and is, strictly speaking,
not a synthesizer; the waveforms and signal processing
facilities provided are too limited. However, it illustrates
our concerns well, and offers the user the ability, to directly
manipulate the envelope of the sound, by dragging the ends

4

of the horizontal line displayed below the waveform to
specify amplitude; the waveform is then regenerated and
redrawn. This interaction exhibits the features of a good
interface in that the system status (i.e. the current sound) is
visible at all times, actions can be reversed, the GUI makes
it difficult to make errors, and the menus make available
actions visible.
As with Reaktor, this is a direct manipulation interface.
The use of the term requires some qualification, however.
Specifically, while the interaction in Sound Sampler retains
some features of direct manipulation (visibility of the
objects of interest, incremental action at the interface,
syntactic correctness of all actions), there are important
restrictions. Actions are not necessarily reversible: editing
may be destructive (at each edit point, the modified sound
replaces the previous version). Also, the degree of control
afforded is quite limited. As noted earlier in outline, the
only aspect of the sound which lends itself to direct
manipulation to any extent is that of amplitude: there is a
clear intuitive connection between the amplitude of the
waveform on the display, and its subjective loudness; but
as indicated before, conventional waveform representations
do not convey very much information on subjective sound
colour. Thus, the user still needs to formulate the
directives to the system in system-oriented terminology:
amplitude envelopes, formant frequency bands etc. Thus, a
characteristic of a direct manipulation interface - that the
output expression of the object of interest can be used to
formulate an input expression - applies only partially here.
Comments from users who were asked, in a series of user
tests [11], to compare the interface of a ‘Fixed
Architecture’ synthesizer with that of one which
incorporated elements of Direct Specification revealed a
unanimous preference for the latter.

4.4 Other Types of User Interface
The taxonomy of user interfaces for timbral control in
synthesizers identified above is not exhaustive. However,
the main other kinds of interface add little, if anything, of
principle to our argument. One such category, noted earlier,
controls a kind of synthesis called physical modelling [3].
This involves simulating, in software, physical systems
such as stretched strings. Although the mental model of
synthesis is quite different from those we have considered,
from an interaction perspective, the resultant user interfaces
are generally just examples of the parameter selection
interfaces of section 4.1, or variations of those discussed in
section 4.2. In any case, the vast majority of users do not
have the specialized knowledge to be able to map from
physical systems to timbre, consequently the arguments of
previous sections apply with similar force.

5. CONCLUSIONS
In this paper, we have analysed various user interfaces for
synthesizer timbre and identified a taxonomy of common
user interface types for this domain. A distinction is made
between user interfaces which allow visual representations

of sound to be manipulated more or less directly and those
that allow the manipulation of an architectural structure, or
the parameters of such an architecture, which generates the
sound. None of the core languages involved have been
found to map appropriately to the task language of the
musician.
Further work will look at how the chasm between the
musician's task language and the available approaches can
be bridged. Issues to be addressed in further work include:
• Empirical studies of timbre perception,
• Evolutionary design user interfaces for timbre,
• Empirical studies of how musicians describe timbres.
Other areas which suggest themselves for possible further
investigation include, firstly, the development of a 'lingua
franca' common ‘fixed architecture’ hardware interface:
given the degree of convergence that has already occurred,
this would appear to be feasible. More generally, we
propose the examination of the cognitive processes and
working methods of musicians engaged in creating and
editing sounds, in order to guide the design of user
interfaces which reflect and facilitate these processes. Any
adequate solution will need to address the gulf between
task and core language analysed above.

6. REFERENCES
[1] The CM Guide to FM Synthesis, Computer Music,

http://www.computermusic.co.uk/tutorial/fm/fm1.asp
[2] Dix A., Finlay J., Abowd G. and Beale R. (1998).

Human-Computer Interaction. Prentice Hall.
[3] Ethington R. and Punch B. (1994) SeaWave: A System

for Musical Timbre Description, Computer Music
Journal 18:1 pp 30-39.

[4] Fernandes G. and Holmes, C. (2002) Applying HCI to
Music-Related Hardware. CHI 2002.

[5] Miranda E. R. (1995). An Artificial Intelligence
Approach to Sound Design, Computer Music Journal
19(2): 59-75, MIT Press.

[6] Native Instruments, www.native-instruments.com
[7] Polfreman R and Sapsford-Francis J. (1995) A

Human-Factors Approach to Computer Music Systems
User-Interface Design. Proc. of the 1995 International
Computer Music Conference ICMA.

[8] Pressing J. (1992) Synthesizer Performance and Real-
Time Techniques. Oxford University Press.

[9] Rolland P-Y. and Pachet F. (1996). A Framework for
Representing Knowledge about Synthesizer
Programming, Computer Music Journal 20(3): 47-58.

[10] Ruffner J. W. and Coker G. W. (1990) A Comparative
Evaluation of the Electronic Keyboard Synthesizer
User Interface, Proc. 34th Annual Meeting Human
Factors Society.

5

[11] Seago A. (2004). Analysis of the synthesizer user
interface: cognitive walkthrough and user tests.
TR2004/15, Dept of Computing, Open University.

[12] Shneiderman B. (1997). Designing the User-Interface:
Strategies for Effective Human-Computer Interaction.
Reading, Mass: Addison-Wesley.

[13] Smith J. O. (1992). Physical modeling using digital
waveguides. Computer Music Journal, vol. 16 no. 4,
74-91.

[14] Thimbleby H. (2001). The Computer Science of
Everyday Things. Proceedings of the Australasian
User Interface Conference.

[15] Williges R., C Williges B. H. and Elkerton J. (1987).
Software Interface Design. In Salvendy G (ed)
Handbook of Human Factors. New York: Wiley.

