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In this paper, we review the types of user interfaces used in electronic
synthesizers, both hardware and software, and conduct a heuristic review
on a number of representative examples.  The process of building and
editing sounds in modern commercial synthesizers requires a good
understanding, both of the system architecture and of the synthesis
engine itself, as the user/system dialog is conducted in system-specific
terms, rather than in terms familiar to a musician.  User interfaces of
contemporary synthesizers may be procedural, presenting the user with a
set of functional modules which generate/process sound, or alternatively,
offer the means of creating/editing sound, using direct manipulation
techniques.  We conclude that neither style emerges as being better suited
to the task of sound synthesis; in this domain, direct manipulation is
limited in the degree of control afforded, while the form filling style
characteristic of fixed architecture synthesizers is slow and laborious.
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1 Introduction

This paper analyses a number of electronic music synthesizer user interfaces from
various HCI points of view, and identifies relevant taxonomies, design issues and
previous research for user interface design in this specialized and demanding
domain.  Heuristic evaluations are presented for various representative user
interfaces from different parts of the taxonomy using a common task, and lessons
are drawn for future user interface design and for future research in this area.

The user interfaces of audio hardware and audio software generally, and of
synthesizers in particular, have received relatively little study from the HCI
perspective.  A number of the more relevant and recent HCI studies in this area are
outlined here.  An analysis conducted on the working methods of composers
working with Computer Music Systems (CMS) (Polfreman & Sapsford-Francis,
1995) identified a number of typical tasks, and concluded that CMS designers
should consider wide variations in composers’ knowledge, and in the types of
composer they are designing for.  Furthermore, it was recommended that, in order
to be usable by composers with varying levels of skill, and compositional style,
CMS systems should provide more than one level of interaction, ‘hide’ unwanted
levels of complexity, and provide a knowledge based system  (KBS) for details that
a user does not wish to specify directly.  A previous review of synthesizer user
interface design (Ruffner & Coker, 1990) focused on the control surfaces of four
contemporary instruments, and commented on the degree to which they conformed
to design principles identified by Williges et al (1987).  They concluded that the
demands placed on the user by the interfaces made them far from ideal for the
purpose -  noting that, in general ‘user interface principles have been, at best
haphazardly applied’ in the design of the synthesizer interface.  The authors also
suggested a number of issues that should drive future research in this area.
Another more recent study (Fernandes & Holmes, 2002) has applied a heuristic
evaluation to an electric guitar pre-amplifier interface.

The present paper examines a number of interaction styles, taking a number of
commercial software and hardware synthesizer user interfaces (UI) as examples.
In addition, a heuristic evaluation, derived from Nielsen and Molich, and described
in Nielsen, 1994, is conducted on these interfaces.

2 Background

The range of tools and techniques available to the musician for the design and
editing of sound is vast; however, the modern synthesizer is far from intuitive in its
use.  The UI design of hardware synthesizers is an illustration of a number of
issues raised by Harold Thimbleby with respect to such devices as hand held
calculators, televisions, microwave cookers etc (Thimbleby, 2001).  He notes that
the hand held calculator is a ‘mature technology’, with well defined requirements,
and goes on to describe two models of calculator which look superficially very
similar, but whose controls often do different things.  Similarly, over the past
fifteen years, control surface designs of commercially available synthesizers have
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to some extent converged, to the extent that we can consider this type of instrument
to have acquired a generic interface (Pressing, 1992).  As with calculators,
however, the user cannot assume that similar looking buttons will perform the
same function, and conversely, a given function could be conceivably performed
by a number of different controls.

As Thimbleby says, the range of tasks performed by a calculator is well defined;
however, that which must be performed by a synthesizer is considerably greater,
and, as discussed in this paper, is not so easily defined.  Nevertheless, the difficulty
of negotiating the interface means that most users have contented themselves with
making use of a bank of instantly available presets - evidence for this is largely
anecdotal, but “allegedly, nine out of ten DX7s coming into workshops for
servicing still had their factory presets intact”. (Computer Music, 2004)

Over the last few years, hardware synthesizer functionality has increasingly been
migrating into software (Reaktor, Reason etc), and it is useful to examine the effect
this has had on the user interface.  Although in theory freed from the constraints
imposed by the hardware – the limited space available for controllers and data
displays, in fact, software designers have sought to emulate their hardware
counterparts not only in broad functionality – the synthesis of sounds - but also in
the interface offered to the user; thus the user is presented on screen with a
simulation of an analog synthesizer control surface, and manipulates software
buttons, faders and rotary dials using the mouse.

3 ‘Real time’ and ‘fixed’ synthesis

Pressing, 1992 describes the controls of the synthesizer interface as falling into two
broad categories – those which govern ‘real time’ synthesis, and those which
provide access to the parameters governing ‘fixed’ synthesis.  ‘Real time’ synthesis
controllers  - pitch wheels, foot pedals and, of course, the keyboard - allow instant
and dynamic modification of single scalar quantity aspects of existing sounds –
pitch, filter cut-off frequency, volume etc.  These controllers are very much
designed and positioned on the control surface to meet the requirements of
performance, and are to a great extent intuitive in their use (the effect that a
controller has on the sound is instantly audible); they will not be considered further
here.

The ‘fixed synthesis’ category of controllers, however, will be examined more
closely.  This component of the interface allows the design, programming and
representation of basic sound objects, and typically requires an in-depth
understanding of the internal architecture of the instrument, and the methods it
uses to represent and to generate sound.  The user is obliged to express directives
for sound specification in system terminology, rather than in language derived
from the user domain.

4 Synthesis as industrial control process

Software sound synthesis invites comparison between the types of interactions it
affords, and those of other application domains, such as text processing, graphics
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and animation.  However, the user interface of the typical commercial synthesizer,
in both software and hardware, more closely resembles those interfaces which
facilitate industrial control processes, which act as intermediary between the
operator and the real world (Dix et al, 1998), and in which two levels of feedback
are provided  – firstly, from the instrumentation - meters, gauges etc – and
secondly, from the equipment or processes being controlled (see fig 1).

Fig 1: Adapted from Dix et al (1998) Human-Computer Interaction

A useful analogy is that of the flight control deck, where the pilot is provided
with specific information on altitude, pitch, yaw, and speed from the
instrumentation, but also is more directly afforded ‘real world’ information by the
behaviour of the aeroplane itself.  Similarly, the user of a typical synthesizer is able
to determine the current ‘state’ of the sound being edited by the parameter values
displayed in the LCD, but can also audition the effect of the editing process by
pressing a key.

This is not the case with, for example, a desktop operating system, where the
mouse dragging of a document icon from one folder to another is not accompanied
by any perceptible ‘real world’ feedback - because the user is engaging with a
“representation or model of reality” (Shneiderman, 1997), he/she takes it on trust
that the action has actually happened.  Similarly, the results of actions taken by the
user of a WYSIWYG graphics or word processing program are visible on the
screen - no confirmatory ‘real world’ feedback is provided until the document is
printed. From the user’s point of view, the interface and the objects of interest are
one and the same (Dix et al, 1998).

Such a ‘fusing’ of the object of interest and its iconic representation is more
problematic with sound synthesis systems, most obviously because the object of
interest is non-visual.  While an iconic representation can readily be found both for
objects such as documents, drawing tools and geometric shapes, and for actions
such as copy, delete, draw etc, sound does not lend itself to any form of consistent
visual description which can be said to make “psychological sense” (Karkoschka,
1966) – that is to say, where its subjective and timbral, rather than purely
acoustical and measurable characteristics are apparent.  (The Western musical
score captures only a limited range of sound attributes – pitch, for example; but it
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otherwise relies heavily on verbal directives to indicate subtleties of tone colour
and articulation).

5 Visual representation

Visual representation of sonic information is usually in either the time domain (a
plot of audio signal voltage with respect to time, e.g. fig 2, or the frequency
domain (a plot of the relative amplitudes of the frequency components of a
waveform.

Fig 2: Time domain representation of sound

The interpretation of time domain plots is, to some extent, intuitively clear; this
is a sound made up of sonic fragments, of varying degrees of loudness, punctuated
by silence (this is a recording of normal speech).  Zooming in on this display
reveals details of its waveform. 

In theory, this output expression of the system is capable of being used to
formulate an input expression in a manner characteristic of direct manipulation
systems (Dix et al, 1998) - in this case, by the provision of tools to ‘draw’ and
‘edit’ the desired waveform.  (One of the first synthesizers which allowed the user
to sample and edit sound directly, the Fairlight CMI, included a page on which
waveforms could be drawn on screen using a light pen.)  In practice, of course, an
interface for ‘designing’ sounds in this way firstly assumes a static, non-varying
waveform over time, and, secondly, is hampered by the lack of an obvious and
intuitive mapping between the subjective and perceptual characteristics of the
sound as a whole and its visual representation on screen.  It presupposes that the
user is able to specify minutely the waveform of the sound that he/she is trying to
create.

This is also true of  frequency domain representation, typically taking the form of
a frequency spectrum plot derived from Fourier analysis of a waveform.  The core
language information which it provides on the frequency content of a waveform is
too low-level to be useful as a general means of manipulating sonic attributes.

More generally, there is a considerable gulf between the task language and the
core language (Dix et al, 1998).  Fig 3 illustrates the point.  The left hand column
contains examples of terms which might be used by a musician to describe a given
sound. Such terms are used to describe those attributes of sound -  timbre, texture
and articulation - which cannot be entirely captured by the conventions of the
Western musical score and are often chosen for their perceived extra-musical
analogies with other domains - colour and texture, for example - or for emotional
associations. The right hand column, by contrast, describes objective and
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measurable quantities and attributes associated with sound.  The problem is one of
mapping one set of descriptors to the other.

Fig 3: User and task languages

The problem of bridging the gulf between task and core language in sound
synthesis has been approached in a number of ways – using techniques drawn from
artificial intelligence (Miranda, 1995) and knowledge based systems (Ethington &
Punch, 1994, Rolland & Pachet, 1996).  Some of these approaches are briefly
summarised here.  A successful metaphor has been drawn from the control surfaces
and sound generating mechanisms of acoustical music instruments.  Physical
modelling is the simulation in software of these mechanisms (Smith, 1992), the
user being able to vary the software parameters of an emulated instrument – the
length of its strings or bore, the size of its finger holes, the stiffness of its reed, the
density of its soundboard etc – in order to create new and interesting sounds.
Another approach has been to consider the multidimensional parameters of sound
as the axes of a timbral space, and to devise means of structuring and negotiating
that space (Vertegaal & Bonis, 1994).

6  User interface architecture types

Until the early 1980s, commercial synthesizer user interface design was primarily
indirect and procedural, in which a given sound was defined in terms of the
electronic modules required to generate it, and in which the interface elements
presented to the user offered control over the settings of these modules. Two types
of architecture can be discerned within this overall category, fixed and user
specified (see fig. 4).

Fixed architectures present to the user an internal model of sound which is
essentially static and tends to be hierarchical - sound as a tree stuctured assemblage
of parameters.  Typically, a given sound will consist of a number of ‘voices’, each
of which in turn is made up of a number of waveforms, or ‘elements’.   For the
user, the task of defining a sound is one of negotiating this structure, specifying
parameters by a  ‘form filling’ process.  User specified architectures, by contrast,
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are essentially fluid and non-hierarchical.  These two types will be examined in this
study.

A second interaction style, which exploits the GUI interface, and which will also
be examined, is that of direct engagement with visual representations of sound
(usually, but not always, through direct manipulation techniques), as distinct from
manipulating the means of generating that sound. Here, the user is able to work
with a visual time or frequency domain representation of the sound, using tools
analogous to those used in graphics packages.

Indirect, procedural - fixed architecture
- user specified architecture

Direct engagement

Fig 4: User interface architecture types

7. Task analysis and heuristic evaluation

In this section, we will report on a task analysis and heuristic evaluation carried out
on a small but broadly representative range of synthesizer user interfaces.  The
synthesizers surveyed here are discussed under the three interface categories noted
above.  For each synthesizer, a task analysis has been performed, the task in
question being the creation of a simple ‘sound object’; a sound whose time domain
waveform is a sawtooth, whose frequency is 440 Hz, and whose overall amplitude
envelope describes a long and smooth decay.  Before considering the analysis
further, a few comments are in order.

Firstly, it should be pointed out that many synthesizers do not fit solely into one
or other of these categories, and make use of a variety of techniques to achieve the
same end; indeed, one of the features of a good interface is precisely this kind of
flexibility.

Secondly, all are very different in their capabilities, performance modes, and
methods of sound generation, and in order to compare ‘like with like’, the chosen
task is deliberately limited in scope.

Thirdly, the task, as defined here, is, to some extent, contrived.  In a working
situation, a user would be more likely to take an existing sound from the library
available, and edit it, rather than generate a sound ab initio.  However, given that
the libraries available will differ (and will not exist in some cases), the evaluation
necessarily needs to analyse the process from the beginning.

Five distinct phases in the generation process can be discerned; initialisation,
waveform selection, pitch selection, envelope selection, and save.  The first and last
of these really only apply to synthesizers which are programmable; however, the
second, third and fourth phases (which may occur in any order) are common to
most, if not all architectures, and relate to timbre, pitch and loudness respectively.
Pitch and loudness are quantities which are located on to one dimensional scales -
high/low, loud/soft, and can be readily mapped onto controllers such as knobs ansd
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sliders (as mentioned above, these can be configured as real time synthesis
controllers).  Timbre, on the other hand is multi-dimensional, and as such is less
easily captured and represented in a way that permits intuitive modification; and it
is this aspect of synthesizer programming which has presented problems for
interface design.

Each synthesizer is evaluated in terms of the number of steps required to
complete the task outlined above.  The raw data from each task analysis is not
presented here, but is viewable on http://www.lgu.ac.uk/~seago/Task_analysis.htm.

Additionally, a heuristic evaluation technique, adapted from Nielsen, 1994, is
used. This is a structured method for evaluating a user interface design, by
considering it against a number of design principles and criteria, among them
visiblity of system status, match between system and real world, user control and
freedom. Normally, this would be done by several independent evaluators; in this
paper, however, the author has used it to highlight some of the features of, and
differences between various interaction styles.

7.1 User specified architectures - Reaktor

In this architecture model, sound is viewed as the output of a network of functional
components - oscillators, filters, amplifier.  A simple representation is given in fig
5.

voltage
controlled
oscillator (VCO)

voltage
controlled
filter (VCF)

voltage
controlled
amplifier (VCA)

Fig 5: Basic oscillator/filter/amplifier configuration

The structure of this network, as stated previously, is fluid, and can become quite
complex - in addition to the possibility of the output of any element being
processed by one or more other elements, the parameters of each element -
frequency, envelope, cut-off frequency - can be dynamically controlled by the
output of another.  Early subtractive synthesizers (Moog, ARP etc) come under this
heading; with the basic components being linked by patch cords, the signal path is
visible and immediately modifiable.

In practice, of course, the concept of sound as a non-hierarchical network of
functional modules is limited, in the case of hardware synthesizers, by the number
of hardware modules available. A software version, on the other hand, has no such
restriction. One striking aspect of the oscillator/filter/amplifier model is the fact
that it has survived the arrival of many other synthesis methods, and that its
associated vocabulary has been appropriated and applied in software; it has in
many respects become a lingua franca for audio synthesis.

Reaktor (Native Instruments, 2003) is a good example of a software synthesizer
that, amongst other things emulates and mimics a modular subtractive synthesizer.
The organising principle here is one in which individual software ‘synthesizers’, or
instruments are grouped to form an ensemble (see fig 6).
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Fig 6: Grouped Reaktor instruments

Each instrument is made up of a number of modules, some of which may be
drawn from the subtractive/FM synthesis domain (envelope generators, oscillators,
etc); others may be themselves instruments.  Connections between components are
made by mouse-dragging, and in this way, a complex and fluid structure may be
generated; one which is also recursive, in that instruments may be defined as
assemblages of other instruments.

Four actions are required to initialise an instrument, two to select the waveform,
and two for the pitch.  The process of specifying the envelope, however, is rather
more complicated, and most of the interaction is devoted to this area.

Note that the interaction involved in building an instrument is, on the face of it,
one of direct manipulation; it is important to emphasise however, that the ‘objects
of interest’ with which the user engages are not representations of the sound itself,
but of the functional components required to create it.

Four actions are required to complete the voice initialisation phase, and two each
to select the waveform and pitch.  However, no less than fourteen actions are
required to specify the required envelope.

Visually, the interface presents a clear and uncluttered view of the system.  As in
the hardware version, there is clear visibility of the system state at all times, and
actions are reversible.  The interaction is consistent throughout, (a given action will
produce the same result in different contexts), and the GUI makes ‘illegal’ actions
impossible.  However, like the hardware version, the user is unable to aurally
evaluate the success of his/her actions until a minimum number of connections
have been made; up until this point, there will be no sound at all.

7.2 Fixed architectures - Yamaha SY35
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As discussed above, the control surface of more recent hardware-based
synthesizers have standardised in recent years: typically, it will consist of

• Performance controls - keyboard, pitch wheel, sliders, ribbon;

• Program or patch selection controls;

• Programming controls - allowing program parameters to be changed;

• Mode selection controls - play mode, edit mode, store mode, utility;

• Sound engine.

Limitations on the control surface space mean that a given control may have to
be multi-functional, its exact usage at any given time being determined by the
mode selection.

The model of sound on which the interface is built is one which has a static and
essentially hierarchical structure, whose constituent parts are parameter settings
defining waveforms, envelopes, filter cut-off frequencies, LFO frequencies etc,
which can be modified or turned on and off.  In this interface model, the task of
defining or editing a sound involves the negotiation of this structure, incrementally
modifying the sound by selecting and changing individual parameters.  An
example of such an interface is that of the Yamaha SY35.

A given instrument (or multi) consists of a number of voices, each of which
comprises two or four waveforms (or elements). Parameters can be
specified/modified at all levels of the structure; pressing the Edit/Utility button
provides access to these parameters.

The initialisation phase requires four separate actions in all. The selection of the
waveform involves cycling through the available options, using the +1/YES button,
using an arrow button to locate the cursor on the correct field, and then setting the
value of the selected field, using the +1/YES button again.  The number of actions
reqiured is at least nine, and may be more; specifying the amplitude envelope
involves even more actions.  Overall, the process involves far more user actions
than was the case with Reaktor.

The modification of a sound can only be done incrementally.  The LCD indicates
no more than one parameter at a time; this means that there is no overall visibility
of the system state.  There is however, constant feedback available; the user is able
to assess the effect of the change that s/he has made; actions are at all times
reversible, and errors - ‘illegal actions’ - are impossible.  Parameters are selected,
and modifications effected in the same way throughout the structure.

It is interesting to consider this 'tree' structure negotiated by the user in the light
of 'depth versus breadth' studies of menu structures in application software
packages (Landauer & Nachbar, 1985, Norman & Chin, 1988, Kiger, 1984).  Menu
structures can be either 'deep', with a number of levels, or 'broad' with fewer levels,
but there seems to be general agreement that users are better able to navigate
'broad' structures with no more (and preferably fewer) than four levels.  The menu
structure on the SY35 conforms to the 'broad' model.
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7.3 Direct engagement

All the interfaces examined in the previous two sections are predicated on a model
of sound as an assemblage of components which generate or modify sound; this
assemblage, having been designed, is the engine which generates the required
sound.  The following section deals with direct engagement interfaces.

Direct manipulation is much more a feature of this mode of interaction, than was
the case with Reaktor.  The use of the term in this context requires some
qualification, however.  While the interaction retains some features of a direct
manipulation interface, as defined in Shneiderman, 1997 (visibility of the objects
of interest, incremental action at the interface, syntactic correctness of all actions),
there are important limitations.  Actions are not necessarily reversible - editing can
be destructive (where at each edit point, the modified sound replaces the previous
version) or non-destructive, where the user is able to back out of an edit step.  Also,
the degree of control afforded here is quite limited.  The only aspect of the sound
which lends itself to direct manipulation to any extent is that of amplitude (there is
a clear intuitive connection to be made between the amplitude of the waveform,
and its subjective loudness); but as discussed before, neither time-domain nor
frequency domain waveform representation convey very much information on
subjective sound colour.  In short, the user still needs to formulate the directives to
the system in system oriented terminology - amplitude envelopes of partials,
formant frequency bands etc.  Thus, the predominant feature of a direct
manipulation interface - that the output expression of the object of interest can be
used to formulate an input expression - applies only partially here.

In this section we review two examples of a DM synthesis interface  - Sound
Sampler and  Metasynth.

7.3.1. Sound Sampler

Sound Sampler is a package by Alan Glenns, designed for the editing of short
audio samples, and is, strictly speaking, not a synthesizer; the waveforms and
signal processing facilities provided are too limited.  However, it offers the user the
ability, via a mouse, to directly manipulate the envelope of the sound – and, given
its relative simplicity, this makes it a very useful example for illustrating several
issues relevant to our concerns.

There is no initialisation phase as such; waveform and pitch parameters can be
specified in a single dialog.  A sound file is then generated, and displayed on
screen;  a further menu option makes available the following dialog (fig 7).
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Fig 7: Modifying the amplitude – Sound Sampler

The user can then drag the ends of the horizontal line displayed below the
waveform to specify amplitude; the waveform is then regenerated and redrawn.

The process of executing the test task is considerably shorter than was the case in
the previous two examples - but this is to a great extent because the software itself
is far less sophisticated.  Waveform and pitch selection is done in one dialog - and
envelope specification, using direct manipulation, is accomplished using far fewer
user actions.

The task is completed using far fewer actions than was the case in the previous
two examples (although the ‘Select waveform’ process may entail a number of
actions to do with sample rate, and whether the sound is mono or stereo).  In
particular the ‘Select envelope’ phase is relatively speedily accomplished.

This is a very basic synthesizer, the simplicity of which is reflected in its screen
design.  However, the interaction described does exhibit the features of a good
interface in that the system status (i.e. the current sound) is visible at all times,
actions can be reversed, the GUI makes it difficult to make errors, and the menus
make available actions visible.

7.3.2. Metasynth

Metasynth, by Eric Wenger of UI software, is a more comprehensive and
sophisticated synthesizer which makes greater use of direct engagement.  Notable
amongst these is the Image Synth window which displays a frequency against time
graph, providing the user with an image of the spectrum as it shifts in time; the
amplitude of a spectral component at any moment is indicated by its brightness.

The user is provided with a palette of tools for editing this image; a new sound
can be auditioned at any time by generating the sound depicted by the image.  The
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frequency against time representation of the sound makes a perceptual mapping
between the characteristics of the image and those of the sound it represents rather
more apparent than is the case with a purely time domain representation.

In theory, the initial part of the test task -  creating a sawtooth waveform  -
should not pose any great problems.  The harmonics of the sound can be drawn
into the window, and the amplitudes of each adjusted by the shading tools.  It has
to be said, however, that, in this particular program, this process is awkward and
laborious.

The program does offer other ways of achieving the same end.  The procedural
synthesizer window enables the user to specify and graphically edit a waveform,
and designate its pitch.  In terms of the number of user actions required to
accomplish this particular task (including the saving of the voice to a file),
Metasynth is the most straightforward to use, requiring eleven mouse clicks in all.

As in other GUI-based synthesizers, the effect of an action is immediately
apparent, both visually and aurally; actions can be reversed.  The flexibility of the
system, however, means that a bewildering array of controllers is presented to the
user, which results in a rather cluttered appearance, and the mechanics of actually
manipulating the controls is not intuitively clear.  The overall envelope can be
modified by the use of the buttons on the left hand panel.

8 Conclusions

In this paper, we have reviewed and classified a number of synthesizer user
interfaces, focusing in particular on the ‘fixed synthesis’ task of manipulating
timbre.  A taxonomy of user interaction approaches for this domain has been
identified.  An important distinction  is to be made between user interfaces which
allow visual representations of sound to be manipulated more or less directly
(usually, but not necessarily, by direct manipulation) and those interfaces that
allow the manipulation of a structure or parameters of an architecture designed to
generate sound.  The term ‘direct engagement’ is proposed for the former
approach.  Direct engagement often involves direct manipulation; however, the
defining characteristic is that the user engages with a visual representation of the
sound, or some part of it.  The second main approach, in which  users either
parameterise an existing architecture, or specify their own, has much in common
with that governing industrial control processes.

For the purpose of exploring interface design issues in the domain, a heuristic
evaluation of a representative group of hardware and software synthesizers has
been carried out, in which the basis for comparison was the same task in each case.
In terms of the number of user actions required, the interface of the Yamaha SY35
– a typical representative of the ‘fixed architecture’ type - emerges as the least well
suited to the test task.  In particular, the specification of the envelope of the sound
is far more easily and intuitively achieved using graphic means, working on a
direct representation of the sound in the time domain, than by typing in a sequence
of numbers.  It should be borne in mind, however, that the sound object created
was very simple; a more complex sound would be less easy to create using the
techniques characteristic of the direct engagement approach, because of the
problems of representation.  In fact, no one style emerges overall as being best
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suited to the task of sound synthesis; direct engagement is limited in the degree of
control afforded, while the form filling style characteristic of fixed architecture
synthesizers and generator manipulation in general is slow and laborious.

Areas which suggest themselves for possible further investigation include,
firstly, the development of a common hardware interface.  The user interfaces of
most contemporary hardware synthesizers generally are of the ‘fixed architecture’
type.  Given the degree of convergence that has already occurred (the generic
interface already discussed), there is no reason why, in principle, a common
interface could not be developed.  Such an interface would further standardise the
means of navigating the parameter structure and specifying parameter values, and
offer a display which gave the user a more global picture of the current state of the
instrument.

The other direction of potential research is the bridging of the gulf between the
task and core languages of this particular domain.  This is an approach that we are
currently pursuing.  However, we suggest that a fruitful line of enquiry would be
the examination of the cognitive processes and working methods of users engaged
in creating and editing sounds, in order to illuminate and guide the designing and
building of a user interface which reflects and facilitates these processes.
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